Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Front Immunol ; 14: 1185233, 2023.
Article in English | MEDLINE | ID: covidwho-20244458

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a contagious respiratory virus that is the cause of the coronavirus disease 2019 (COVID-19) pandemic which has posed a serious threat to public health. COVID-19 is characterized by a wide spectrum of clinical manifestations, ranging from asymptomatic infection to mild cold-like symptoms, severe pneumonia or even death. Inflammasomes are supramolecular signaling platforms that assemble in response to danger or microbial signals. Upon activation, inflammasomes mediate innate immune defense by favoring the release of proinflammatory cytokines and triggering pyroptotic cell death. Nevertheless, abnormalities in inflammasome functioning can result in a variety of human diseases such as autoimmune disorders and cancer. A growing body of evidence has showed that SARS-CoV-2 infection can induce inflammasome assembly. Dysregulated inflammasome activation and consequent cytokine burst have been associated with COVID-19 severity, alluding to the implication of inflammasomes in COVID-19 pathophysiology. Accordingly, an improved understanding of inflammasome-mediated inflammatory cascades in COVID-19 is essential to uncover the immunological mechanisms of COVID-19 pathology and identify effective therapeutic approaches for this devastating disease. In this review, we summarize the most recent findings on the interplay between SARS-CoV-2 and inflammasomes and the contribution of activated inflammasomes to COVID-19 progression. We dissect the mechanisms involving the inflammasome machinery in COVID-19 immunopathogenesis. In addition, we provide an overview of inflammasome-targeted therapies or antagonists that have potential clinical utility in COVID-19 treatment.


Subject(s)
COVID-19 , Humans , Inflammasomes/metabolism , SARS-CoV-2/physiology , COVID-19 Drug Treatment , Cytokines
2.
J Am Med Dir Assoc ; 2023 May 25.
Article in English | MEDLINE | ID: covidwho-2328388

ABSTRACT

OBJECTIVES: Little is known about how COVID-19 treatment patterns have evolved over time in nursing homes (NHs) despite the devastating effects of COVID-19 in this setting. The aim was to describe changes in COVID-19-related medication use over time among NH residents in the United States. DESIGN: Retrospective cohort study. SETTING AND PARTICIPANTS: This study used electronic health records (EHR) from 11 different US NH corporations between January 1, 2018, and March 31, 2022. METHODS: The use of medications approved for COVID-19-related conditions or known to be used off-label for COVID-19 during the study period is identified. We described trends in the use of each drug and combined use per 1000 NH residents over calendar time [quarters (Q)]. RESULTS: A total of 59,022 unique residents with the use of an eligible medication were identified. Hydroxychloroquine use sharply increased from 9.8 in 2020Q1 to 30.2 orders per 1000 individuals in 2020Q2. Dexamethasone use increased sharply from 14.8 in 2020Q2 to a peak of 121.9 orders per 1000 individuals in 2020Q4. Azithromycin use increased from 44.1 in 2019Q3 to a peak of 99.9 orders per 1000 individuals in 2020Q4, with a drop in 2020Q3 of 51.3 per 1000 individuals in 2020Q3. Concurrent use of azithromycin and hydroxychloroquine increased sharply from 0.3 in 2020Q1 to 10.6 orders per 1000 residents in 2020Q2 and then drastically decreased to 0.6 per 1000 residents in 2020Q3. Concurrent use of dexamethasone and azithromycin rose considerably from 0.7 in 2020Q2 to 28.2 orders per 1000 residents in 2020Q4. CONCLUSIONS AND IMPLICATIONS: As in other settings, COVID-19-related medication use in NHs appears to have changed in response to the shifting evidence base and availability of medications during the pandemic. Providers should continue to diligently modify their prescribing as new evidence accrues.

3.
Redox Biol ; 64: 102769, 2023 08.
Article in English | MEDLINE | ID: covidwho-2328371

ABSTRACT

Cholesterol-24-hydroxylase (CH24H or Cyp46a1) is a reticulum-associated membrane protein that plays an irreplaceable role in cholesterol metabolism in the brain and has been well-studied in several neuro-associated diseases in recent years. In the present study, we found that CH24H expression can be induced by several neuroinvasive viruses, including vesicular stomatitis virus (VSV), rabies virus (RABV), Semliki Forest virus (SFV) and murine hepatitis virus (MHV). The CH24H metabolite, 24-hydroxycholesterol (24HC), also shows competence in inhibiting the replication of multiple viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 24HC can increase the cholesterol concentration in multivesicular body (MVB)/late endosome (LE) by disrupting the interaction between OSBP and VAPA, resulting in viral particles being trapped in MVB/LE, ultimately compromising VSV and RABV entry into host cells. These findings provide the first evidence that brain cholesterol oxidation products may play a critical role in viral infection.


Subject(s)
Virus Internalization , Animals , Mice , Cholesterol/metabolism , COVID-19/metabolism , COVID-19/virology , Homeostasis , SARS-CoV-2/metabolism , Cholesterol 24-Hydroxylase/metabolism
4.
Front Immunol ; 14: 1180336, 2023.
Article in English | MEDLINE | ID: covidwho-2326978

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a global health crisis. Increasing evidence underlines the key role of competent immune responses in resisting SARS-CoV-2 infection and manifests the disastrous consequence of host immune dysregulation. Elucidating the mechanisms responsible for deregulated host immunity in COVID-19 may provide a theoretical basis for further research on new treatment modalities. Gut microbiota comprises trillions of microorganisms colonizing the human gastrointestinal tract and has a vital role in immune homeostasis and the gut-lung crosstalk. Particularly, SARS-CoV-2 infection can lead to the disruption of gut microbiota equilibrium, a condition called gut dysbiosis. Due to its regulatory effect on host immunity, gut microbiota has recently received considerable attention in the field of SARS-CoV-2 immunopathology. Imbalanced gut microbiota can fuel COVID-19 progression through production of bioactive metabolites, intestinal metabolism, enhancement of the cytokine storm, exaggeration of inflammation, regulation of adaptive immunity and other aspects. In this review, we provide an overview of the alterations in gut microbiota in COVID-19 patients, and their effects on individuals' susceptibility to viral infection and COVID-19 progression. Moreover, we summarize currently available data on the critical role of the bidirectional regulation between intestinal microbes and host immunity in SARS-CoV-2-induced pathology, and highlight the immunomodulatory mechanisms of gut microbiota contributing to COVID-19 pathogenesis. In addition, we discuss the therapeutic benefits and future perspectives of microbiota-targeted interventions including faecal microbiota transplantation (FMT), bacteriotherapy and traditional Chinese medicine (TCM) in COVID-19 treatment.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , COVID-19/therapy , SARS-CoV-2 , COVID-19 Drug Treatment , Gastrointestinal Tract
5.
Trop Med Infect Dis ; 8(2)2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2311559

ABSTRACT

For viruses that can be transmitted by contacts of people, efficiently screening infected individuals is beneficial for controlling outbreaks rapidly and avoiding widespread diffusion, especially during the early stage of a pandemic. The process of virus transmission can be described as virus diffusion in complex networks such as trajectory networks. We propose a strategy formulation framework (SFF) for generating various screening strategies to identify influential nodes in networks. We propose two types of metrics to measure the nodes' influence and three types of screening modes. Then, we can obtain six combinations, i.e., six strategies. To verify the efficiencies of the strategies, we build a scenario model based on the multi-agent modelling. In this model, people can move according to their self-decisions, and a virtual trajectory network is generated by their contacts. We found that (1) screening people will have a better performance based on their contact paths if there is no confirmed case yet, and (2) if the first confirmed case has been discovered, it is better to screen people sequentially by their influences. The proposed SFF and strategies can provide support for decision makers, and the proposed scenario model can be applied to simulate and forecast the virus-diffusion process.

6.
Molecular therapy Nucleic acids ; 2023.
Article in English | EuropePMC | ID: covidwho-2298880

ABSTRACT

The creation of safe and effective vaccines that induce potent cellular and humoral immune responses against SARS-CoV-2 is urgently needed to end the global COVID-19 epidemic. Here we developed an alphavirus-derived self-replicating RNA (repRNA)-based vaccine platform encoding the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein. The repRNA triggers prolonged antigen expression compared to conventional mRNA due to the replication machinery of repRNA. To improve the delivery and vaccine efficacy of repRNA, we developed a self-assembling liposome-protamine-RNA (LPR) nanoparticle with highly efficient encapsulation and transfection of repRNA. LPR-repRNA vaccines substantially activated type I interferon response and innate immune signaling pathways. Subcutaneous immunization of LPR-repRNA-RBD led to prolonged antigen expression, stimulation of innate immune cells and induction of germinal center response in draining lymph nodes. LPR-repRNA-RBD induced antigen-specific T-cell responses and skewed cellular immunity towards an effector memory CD8+ T cell response. Immunizations with LPR-repRNA-RBD triggered the production of anti-RBD IgG antibodies and induced neutralizing antibody response against SARS-CoV-2 pseudovirus. LPR-repRNA-RBD vaccines reduced SARS-CoV-2 infection and lung inflammation in mice. Altogether, these data suggest that LPR-repRNA platform can be a promising avenue for COVID-19 vaccine development. Graphical Zhang and colleagues develop a LPR nanovaccine platform encapsulating repRNA that encodes the RBD of SARS-CoV-2 spike glycoprotein (LPR-repRNA-RBD). Compared to conventional mRNA vaccines, LPR-repRNA vaccines enhance the magnitude and duration of antigen expression, activate innate immunity, induce antigen-specific cellular and humoral immune responses, and reduce SARS-CoV-2 infection and lung injury.

7.
Trials ; 24(1): 280, 2023 Apr 18.
Article in English | MEDLINE | ID: covidwho-2295338

ABSTRACT

INTRODUCTION: Postoperative pulmonary complications (PPCs) are prevalent in geriatric patients with hip fractures. Low oxygen level is one of the most important risk factors for PPCs. Prone position has been proven efficacy in improving oxygenation and delaying the progress of pulmonary diseases, especially in patients with acute respiratory distress syndrome induced by multiple etiologies. The application of awake prone position (APP) has also attracted widespread attention in recent years. A randomized controlled trial (RCT) will be carried out to measure the effect of postoperative APP in a population of geriatric patients undergoing hip fracture surgery. METHODS: This is an RCT. Patients older than 65 years old admitted through the emergency department and diagnosed with an intertrochanteric or femoral neck fracture will be eligible for enrollment and assigned randomly to the control group with routine postoperative management of orthopedics or APP group with an additional prone position for the first three consecutive postoperative days (PODs). Patients receiving conservative treatment will not be eligible for enrollment. We will record the difference in the patient's room-air-breathing arterial partial pressure of oxygen (PaO2) values between the 4th POD (POD 4) and emergency visits, the morbidity of PPCs and other postoperative complications, and length of stay. The incidence of PPCs, readmission rates, and mortality rates will be followed up for 90 PODs. DISCUSSION: We describe the protocol for a single-center RCT that will evaluate the efficacy of postoperative APP treatment in reducing pulmonary complications and improving oxygenation in geriatric patients with hip fractures. ETHICS AND DISSEMINATION: This protocol was approved by the independent ethics committee (IEC) for Clinical Research of Zhongda Hospital, Affiliated to Southeast University, and is registered on the Chinese Clinical Trial Registry. The findings of the trial will be disseminated through peer-reviewed journals. ETHICS APPROVAL NUMBER: 2021ZDSYLL203-P01 TRIAL REGISTRATION: ChiCTR ChiCTR2100049311 . Registered on 29 July 2021. TRIAL STATUS: Recruiting. Recruitment is expected to be completed in December 2024.


Subject(s)
Hip Fractures , Wakefulness , Humans , Aged , Prone Position , Lung , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Oxygen , Hip Fractures/surgery , Treatment Outcome , Randomized Controlled Trials as Topic
8.
World J Clin Cases ; 11(9): 2104-2109, 2023 Mar 26.
Article in English | MEDLINE | ID: covidwho-2257468

ABSTRACT

BACKGROUND: Renal clear cell carcinoma (RCC) is a malignant tumor of the genitourinary system with a predilection for males. The most common metastatic sites are the lung, liver, lymph nodes, contralateral kidney or adrenal gland, however, skin metastasis has only been seen in 1.0%-3.3% of cases. The most common site of skin metastasis is the scalp, and metastasis to the nasal ala region is rare. CASE SUMMARY: A 55-year-old man with clear cell carcinoma of the left kidney was treated with pembrolizumab and axitinib for half a year after surgery and was found to have a red mass on his right nasal ala for 3 mo. The skin lesion of the patient grew rapidly to the size of 2.0 cm × 2.0 cm × 1.2 cm after discontinuation of targeted drug therapy due to the coronavirus disease 2019 epidemic. The patient was finally diagnosed with skin metastasis of RCC in our hospital. The patient refused to undergo surgical resection and the tumor shrank rapidly after resuming target therapy for 2 wk. CONCLUSION: It is rare for an RCC to metastasize to the skin of the nasal ala region. The tumor size change of this patient before and after treatment with targeted drugs shows the effectiveness of combination therapy for skin metastasis.

9.
MedComm ; 4(1), 2023.
Article in English | EuropePMC | ID: covidwho-2232654

ABSTRACT

The recent pandemic of variants of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) highlights the need for innovative anti‐SARS‐CoV‐2 approaches in addition to vaccines and antiviral therapeutics. Here, we demonstrate that a CRISPR‐Cas13‐based strategy against SARS‐CoV‐2 can effectively degrade viral RNA. First, we conducted a cytological infection experiment, screened CRISPR‐associated RNAs (crRNAs) targeting conserved regions of viruses, and used an in vitro system to validate functional crRNAs. Reprogrammed Cas13d effectors targeting NSP13, NSP14, and nucleocapsid transcripts achieved >99% silencing efficiency in human cells which are infected with coronavirus 2, including the emerging variants in the last 2 years, B.1, B.1.1.7 (Alpha), D614G B.1.351 (Beta), and B.1.617 (Delta). Furthermore, we conducted bioinformatics data analysis. We collected the sequence information of COVID‐19 and its variants from China, and phylogenetic analysis revealed that these crRNA oligos could target almost 100% of the SARS‐CoV family, including the emerging new variant, Omicron. The reprogrammed Cas13d exhibited high specificity, efficiency, and rapid deployment properties;therefore, it is promising for antiviral drug development. This system could possibly be used to protect against unexpected SARS‐CoV‐2 variants carrying multiple mutations. Cas13d‐crRNAs inhibit both ancestral and mutated SARS‐CoV‐2 replication. Cas13d‐crRNAs inhibit both ancestral and mutated SARS‐CoV‐2 replication including Delta. Cas13d‐crRNAs could inhibit Omicron and other SARS family strains and are a potential pan‐SARS inhibition strategy.

10.
MedComm (2020) ; 4(1): e208, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2232655

ABSTRACT

The recent pandemic of variants of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need for innovative anti-SARS-CoV-2 approaches in addition to vaccines and antiviral therapeutics. Here, we demonstrate that a CRISPR-Cas13-based strategy against SARS-CoV-2 can effectively degrade viral RNA. First, we conducted a cytological infection experiment, screened CRISPR-associated RNAs (crRNAs) targeting conserved regions of viruses, and used an in vitro system to validate functional crRNAs. Reprogrammed Cas13d effectors targeting NSP13, NSP14, and nucleocapsid transcripts achieved >99% silencing efficiency in human cells which are infected with coronavirus 2, including the emerging variants in the last 2 years, B.1, B.1.1.7 (Alpha), D614G B.1.351 (Beta), and B.1.617 (Delta). Furthermore, we conducted bioinformatics data analysis. We collected the sequence information of COVID-19 and its variants from China, and phylogenetic analysis revealed that these crRNA oligos could target almost 100% of the SARS-CoV family, including the emerging new variant, Omicron. The reprogrammed Cas13d exhibited high specificity, efficiency, and rapid deployment properties; therefore, it is promising for antiviral drug development. This system could possibly be used to protect against unexpected SARS-CoV-2 variants carrying multiple mutations.

11.
Cell Immunol ; 385: 104689, 2023 03.
Article in English | MEDLINE | ID: covidwho-2230873

ABSTRACT

To investigate the effect conferred by vaccination and previous infection against SARS-CoV-2 infection in molecular level, weighted gene co-expression network analysis was applied to screen vaccination, prior infection and Omicron infection-related gene modules in 46 Omicron outpatients and 8 controls, and CIBERSORT algorithm was used to infer the proportions of 22 subsets of immune cells. 15 modules were identified, where the brown module showed positive correlations with Omicron infection (r = 0.35, P = 0.01) and vaccination (r = 0.62, P = 1 × 10-6). Enrichment analysis revealed that LILRB2 was the unique gene shared by both phosphatase binding and MHC class I protein binding. Pathways including "B cell receptor signaling pathway" and "FcγR-mediated phagocytosis" were enriched in the vaccinated samples of the highly correlated LILRB2. LILRB2 was also identified as the second hub gene through PPI network, after LCP2. In conclusion, attenuated LILRB2 transcription in PBMC might highlight a novel target in overcoming immune evasion and improving vaccination strategies.


Subject(s)
COVID-19 , mRNA Vaccines , Humans , COVID-19/genetics , COVID-19/prevention & control , Gene Regulatory Networks , Leukocytes, Mononuclear , SARS-CoV-2 , Vaccination , mRNA Vaccines/immunology
12.
Eur Neuropsychopharmacol ; 66: 67-77, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2232814

ABSTRACT

Older adults have been markedly impacted by the coronavirus disease 19 (COVID-19) pandemic, and many reports have cited concerns regarding potential psychiatric sequelae of coronavirus disease (COVID-19), but the actual effects of psychotropics on the COVID-19 are unclear. In this study, multivariate logistic regression was used to evaluate associations between the prescription of psychotropics and the risk of SARS-CoV-2 infection, and COVID-19-related death among the participants who were tested for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) before October 18, 2021, in UK Biobank. The psychotropics included 18 types of medications. Among 168,173 participants who underwent testing for SARS-CoV-2 RNA, 30,577 (18.2%) were positive, and 14,284 (8.5%) participants used psychotropics. Among 30,577 participants who were infected with SARS-CoV-2, 1,181 (3.9%) were COVID-19-related deaths, and 2,542 (8.3%) participants used psychotropics. In multivariate logistic regression, psychotropics use was significantly associated with the risk of SARS-CoV-2 infection (odds ratio [OR], 0.95; 95% confidence interval [CI], 0.88-0.98), and COVID-19-related death (OR, 0.78; 95% CI, 0.64-0.98). Interestingly, the use of diazepam was significantly associated with a 31% lower risk of SARS-CoV-2 infection (OR, 0.69; 95% CI, 0.53-0.88). The use of sertraline was significantly associated with a 89% lower risk of COVID-19-related death (OR, 0.11; 95% CI, 0.02-0.39). In conclusion, our findings suggested that the use of psychotropics was associated with a lower risk of SARS-CoV-2 infection and COVID-19-related deaths.

13.
Sci Total Environ ; 870: 161885, 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2221339

ABSTRACT

Triclosan (TCS) has been widely used in daily life because of its broad-spectrum antibacterial activities. The residue of TCS and related compounds in the environment is one of the critical environmental safety problems, and the pandemic of COVID-19 aggravates the accumulation of TCS and related compounds in the environment. Therefore, detecting TCS and related compound residues in the environment is of great significance to human health and environmental safety. The distribution of TCS and related compounds are slightly different worldwide, and the removal methods also have advantages and disadvantages. This paper summarized the research progress on the source, distribution, degradation, analytical extraction, detection, and removal techniques of TCS and related compounds in different environmental samples. The commonly used analytical extraction methods for TCS and related compounds include solid-phase extraction, liquid-liquid extraction, solid-phase microextraction, liquid-phase microextraction, and so on. The determination methods include liquid chromatography coupled with different detectors, gas chromatography and related methods, sensors, electrochemical method, capillary electrophoresis. The removal techniques in various environmental samples mainly include biodegradation, advanced oxidation, and adsorption methods. Besides, both the pros and cons of different techniques have been compared and summarized, and the development and prospect of each technique have been given.


Subject(s)
COVID-19 , Triclosan , Humans , Triclosan/analysis , Chromatography, Liquid , Anti-Bacterial Agents , Solid Phase Extraction
14.
Frontiers in psychology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2125446

ABSTRACT

Based on the big data and survey data of online recruitment platform, this paper empirically tests the impact of COVID-19 on the employment status and psychological expectations of college graduates. The results show that: under the impact of COVID-19 epidemic, both supply and demand sides of college graduates’ employment market are affected, such as the decline of recruitment demand, the rise of the employment supply, and the obvious decrease of employment market prosperity. The impacts of COVID-19 epidemic on college graduates’ employment status and psychological expectation in different cities are heterogeneous. In the short term, the epidemic has a negative impact on the employment of graduates, but the employment situation is gradually improving with the support of national policies. Under the influence of COVID-19 epidemic, graduates will change their employment location and expected salary, and they tend to choose “temporary non-employment,” and their proportions of getting offers and signing contracts are significantly reduced. This paper suggests: Firstly, we should continue to push forward the action plan of “expanding jobs in graduation season to promote employment,” and strengthen the persistence and permanence of employment promotion policies for college graduates;Secondly, encourage college students to change their employment concept and rationally adjust their employment expectations;Thirdly, to promote the development of flexible employment of college graduates, it is necessary to strengthen the propaganda of flexible employment, so that students can understand relevant policies;Fourthly, strengthen employment guidance services for graduates from poor families to ensure the continuity and stability of employment assistance policies.

15.
Allergy Asthma Immunol Res ; 14(6): 604-652, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2144267

ABSTRACT

In the last few decades, there has been a progressive increase in the prevalence of allergic rhinitis (AR) in China, where it now affects approximately 250 million people. AR prevention and treatment include allergen avoidance, pharmacotherapy, allergen immunotherapy (AIT), and patient education, among which AIT is the only curative intervention. AIT targets the disease etiology and may potentially modify the immune system as well as induce allergen-specific immune tolerance in patients with AR. In 2017, a team of experts from the Chinese Society of Allergy (CSA) and the Chinese Allergic Rhinitis Collaborative Research Group (C2AR2G) produced the first English version of Chinese AIT guidelines for AR. Since then, there has been considerable progress in basic research of and clinical practice for AIT, especially regarding the role of follicular regulatory T (TFR) cells in the pathogenesis of AR and the use of allergen-specific immunoglobulin E (sIgE) in nasal secretions for the diagnosis of AR. Additionally, potential biomarkers, including TFR cells, sIgG4, and sIgE, have been used to monitor the incidence and progression of AR. Moreover, there has been a novel understanding of AIT during the coronavirus disease 2019 pandemic. Hence, there was an urgent need to update the AIT guideline for AR by a team of experts from CSA and C2AR2G. This document aims to serve as professional reference material on AIT for AR treatment in China, thus improving the development of AIT across the world.

16.
Allergy Asthma Clin Immunol ; 18(1): 56, 2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-2139396

ABSTRACT

BACKGROUND: Air pollution may induce or reinforce nasal inflammation regardless of allergy status. There is limited direct clinical evidence informing the treatment of airborne pollution-related rhinitis. OBJECTIVE: To assess the effectiveness of intranasal budesonide in adults with self-reported rhinitis symptoms triggered/worsened by airborne pollution. METHODS: Adults in northern China with self-reported rhinitis symptoms triggered or worsened by airborne pollution were randomized to budesonide 256 µg/day or placebo for 10 days in pollution season (October 2019 to February 2020). The primary endpoint was the mean change from baseline in 24-h reflective total nasal symptom score (rTNSS) averaged over 10 days. The secondary endpoints were subject-assessed Global Impression of Change (SGIC), mean change from baseline in individual nasal symptom severity, and mean change from baseline in individual non-nasal symptoms of cough and postnasal drip severity. One-sided P < 0.0125 was considered statistically significant. RESULTS: After an interruption by COVID-19, an interim analysis showed that the study could be ended for efficacy with n = 206 participants (103/group) since the primary efficacy endpoint demonstrated significant results. The final efficacy results showed that the 10-day-averaged rTNSS change in the budesonide group was greater than with placebo (- 2.20 vs - 1.72, P = 0.0107). Budesonide also significantly improved 10-day-averaged itching/sneezing change (- 0.75 vs - 0.51, P = 0.0009). Results for SGIC and all other individual symptoms did not show significant differences between the two groups. CONCLUSIONS: Intranasal budesonide 256 µg once daily improved the total nasal symptoms and itching/sneezing over 10 days in adults with rhinitis triggered/worsened by airborne pollution.

17.
Ann Intern Med ; 173(3): 204-216, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-2110840

ABSTRACT

BACKGROUND: Mechanical ventilation is used to treat respiratory failure in coronavirus disease 2019 (COVID-19). PURPOSE: To review multiple streams of evidence regarding the benefits and harms of ventilation techniques for coronavirus infections, including that causing COVID-19. DATA SOURCES: 21 standard, World Health Organization-specific and COVID-19-specific databases, without language restrictions, until 1 May 2020. STUDY SELECTION: Studies of any design and language comparing different oxygenation approaches in patients with coronavirus infections, including severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS), or with hypoxemic respiratory failure. Animal, mechanistic, laboratory, and preclinical evidence was gathered regarding aerosol dispersion of coronavirus. Studies evaluating risk for virus transmission to health care workers from aerosol-generating procedures (AGPs) were included. DATA EXTRACTION: Independent and duplicate screening, data abstraction, and risk-of-bias assessment (GRADE for certainty of evidence and AMSTAR 2 for included systematic reviews). DATA SYNTHESIS: 123 studies were eligible (45 on COVID-19, 70 on SARS, 8 on MERS), but only 5 studies (1 on COVID-19, 3 on SARS, 1 on MERS) adjusted for important confounders. A study in hospitalized patients with COVID-19 reported slightly higher mortality with noninvasive ventilation (NIV) than with invasive mechanical ventilation (IMV), but 2 opposing studies, 1 in patients with MERS and 1 in patients with SARS, suggest a reduction in mortality with NIV (very-low-certainty evidence). Two studies in patients with SARS report a reduction in mortality with NIV compared with no mechanical ventilation (low-certainty evidence). Two systematic reviews suggest a large reduction in mortality with NIV compared with conventional oxygen therapy. Other included studies suggest increased odds of transmission from AGPs. LIMITATION: Direct studies in COVID-19 are limited and poorly reported. CONCLUSION: Indirect and low-certainty evidence suggests that use of NIV, similar to IMV, probably reduces mortality but may increase the risk for transmission of COVID-19 to health care workers. PRIMARY FUNDING SOURCE: World Health Organization. (PROSPERO: CRD42020178187).


Subject(s)
Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Aerosols , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Humans , Pandemics , Pneumonia, Viral/mortality , Randomized Controlled Trials as Topic , SARS-CoV-2 , Severe Acute Respiratory Syndrome/transmission , Systematic Reviews as Topic , World Health Organization
18.
Int J Biol Sci ; 18(15): 5827-5848, 2022.
Article in English | MEDLINE | ID: covidwho-2056218

ABSTRACT

The rapid dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), remains a global public health emergency. The host immune response to SARS-CoV-2 plays a key role in COVID-19 pathogenesis. SARS-CoV-2 can induce aberrant and excessive immune responses, leading to cytokine storm syndrome, autoimmunity, lymphopenia, neutrophilia and dysfunction of monocytes and macrophages. Pyroptosis, a proinflammatory form of programmed cell death, acts as a host defense mechanism against infections. Pyroptosis deprives the replicative niche of SARS-CoV-2 by inducing the lysis of infected cells and exposing the virus to extracellular immune attack. Notably, SARS-CoV-2 has evolved sophisticated mechanisms to hijack this cell death mode for its own survival, propagation and shedding. SARS-CoV-2-encoded viral products act to modulate various key components in the pyroptosis pathways, including inflammasomes, caspases and gasdermins. SARS-CoV-2-induced pyroptosis contriubtes to the development of COVID-19-associated immunopathologies through leakage of intracellular contents, disruption of immune system homeostasis or exacerbation of inflammation. Therefore, pyroptosis has emerged as an important mechanism involved in COVID-19 immunopathogenesis. However, the entangled links between pyroptosis and SARS-CoV-2 pathogenesis lack systematic clarification. In this review, we briefly summarize the characteristics of SARS-CoV-2 and COVID-19-related immunopathologies. Moreover, we present an overview of the interplay between SARS-CoV-2 infection and pyroptosis and highlight recent research advances in the understanding of the mechanisms responsible for the implication of the pyroptosis pathways in COVID-19 pathogenesis, which will provide informative inspirations and new directions for further investigation and clinical practice. Finally, we discuss the potential value of pyroptosis as a therapeutic target in COVID-19. An in-depth discussion of the underlying mechanisms of COVID-19 pathogenesis will be conducive to the identification of potential therapeutic targets and the exploration of effective treatment measures aimed at conquering SARS-CoV-2-induced COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Pyroptosis , Inflammasomes , Caspases
19.
Sci Rep ; 12(1): 16630, 2022 10 05.
Article in English | MEDLINE | ID: covidwho-2050517

ABSTRACT

A better understanding of various patterns in the coronavirus disease 2019 (COVID-19) spread in different parts of the world is crucial to its prevention and control. Motivated by the previously developed Global Epidemic and Mobility (GLEaM) model, this paper proposes a new stochastic dynamic model to depict the evolution of COVID-19. The model allows spatial and temporal heterogeneity of transmission parameters and involves transportation between regions. Based on the proposed model, this paper also designs a two-step procedure for parameter inference, which utilizes the correlation between regions through a prior distribution that imposes graph Laplacian regularization on transmission parameters. Experiments on simulated data and real-world data in China and Europe indicate that the proposed model achieves higher accuracy in predicting the newly confirmed cases than baseline models.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , China/epidemiology , Europe/epidemiology , Humans
20.
Immun Inflamm Dis ; 10(10): e713, 2022 10.
Article in English | MEDLINE | ID: covidwho-2047628

ABSTRACT

BACKGROUND: An unexplained pneumonia occurred in Wuhan, China in December 2019, later identified and named coronavirus disease 2019 (COVID-19). This study aimed to compare the ultrasonographic features of the lung between patients with COVID-19 in Wuhan (the primary region) and those in Beijing (the secondary region) and to find the value of applying ultrasound in COVID-19. METHODS: A total of 248 COVID-19 cases were collected, including long-term residents in Wuhan (138), those who had a short-term stay in Wuhan (72), and those who had never visited Wuhan (38). Ultrasound examination was performed daily; the highest lung ultrasound score (LUS) was the first comparison point, while the LUS of the fifth day thereafter was the second comparison point. The differences between overall treatment and ultrasonography of left and right lungs among groups were compared. RESULTS: The severity decreased significantly after treatment. The scores of the groups with long-term residence and short-term stay in Wuhan were higher than those of the group that had never been to Wuhan. CONCLUSION: Ultrasonography is effective for dynamic monitoring of COVID-19. The ultrasonographic features of patients in the Wuhan area indicated relatively severe disease. Thus, Wuhan was the main affected area of china.


Subject(s)
COVID-19 , COVID-19/diagnostic imaging , China/epidemiology , Humans , Lung/diagnostic imaging , SARS-CoV-2 , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL